|簡體中文

比思論壇

 找回密碼
 按這成為會員
搜索



查看: 217|回復: 0
打印 上一主題 下一主題

中科大在活性物质拓扑结构研究领域取得重要进展

[複製鏈接]

5229

主題

1

好友

1萬

積分

教授

Rank: 8Rank: 8

  • TA的每日心情

    2024-4-17 22:16
  • 簽到天數: 247 天

    [LV.8]以壇為家I

    推廣值
    0
    貢獻值
    1
    金錢
    7461
    威望
    15989
    主題
    5229
    跳轉到指定樓層
    樓主
    發表於 2022-8-17 00:00:14 |只看該作者 |倒序瀏覽

    近日,中国科学技术大学物理系彭晨晖教授团队等在光控活性物质拓扑结构转换方面取得重要进展。

    前述团队和香港科技大学张锐教授团队合作,以各向异性的液晶材料为研究对象,利用光学构型的方法制备了可编程控制的三维拓扑结构。这项基础研究有助于理解活性软物质中的三维拓扑结构,成果发表在《美国国家科学院院刊》(PNAS)。

    近十年来,活性软物质的研究逐渐成为软凝聚态物理的研究前沿。软物质(soft matter)是指处于固体和理想流体之间的物质,又称软凝聚态物质。而如何解析诸如拓扑缺陷、涡旋等拓扑结构,是理解处于非平衡态的活性软物质的关键所在。了解拓扑缺陷的结构对于其在定向自组装、传感和光子器件等领域的应用非常重要。

    由于活性软物质具有内在的非平衡态属性及复杂的三维结构,对于其拓扑结构的研究一直挑战与机遇并存。而液晶是一类分子取向长程有序的材料。其中,长程有序指整体性的有序现象。液晶分子可以自组装成一定的结构,在显示、感应、光子器件等领域有广泛应用。

    因此,研究团队首先控制液晶自组装结构,制备了二维拓扑缺陷,然后将此二维拓扑图案与沿特定方向的液晶分子结合,利用两种构型之间的不兼容,制备了处于平衡态的三维拓扑结构。随后,利用光照驱动液晶分子使其处于非平衡态,并成为具备活性的软物质系统,从而实现三维拓扑结构之间的相互转换。

    由于在整个过程中,形成三维拓扑结构的二维拓扑图案是可预设计的,研究团队实现了以编程方式控制不同三维拓扑结构之间的转换。研究人员将生物分子置于三维拓扑结构中,生物分子就会在拓扑缺陷阵列处完成自组装,此过程无需任何外力或外加场。其中,三维拓扑缺陷阵列完全由光学构型决定,且可以用光场对其进行复写。可复写的三维拓扑缺陷会被光场引导产生不同的取向、位置以及几何图案。可编程的三维拓扑结构则可诱导上面的生物分子自组装随其变化,从而实现光控可编程生物分子自组装功能。

    前述团队首次制备了处在非平衡状态下的软物质三维拓扑结构,并利用光照实现了三维拓扑结构之间以可编程的方式进行相互转换。

    审稿人评价前述工作“是动态控制活性液晶中的相错结构领域一项意义重大的进展”。其研究中所使用的通过控制分子自组装,来对拓扑结构进行编程,为将来实现可编程的生物分子自组装,以及智能活性材料等研究提供了广阔空间。


    您需要登錄後才可以回帖 登錄 | 按這成為會員

    重要聲明:本論壇是以即時上載留言的方式運作,比思論壇對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,讀者及用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,讀者及用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本論壇受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者及用戶發現有留言出現問題,請聯絡我們比思論壇有權刪除任何留言及拒絕任何人士上載留言 (刪除前或不會作事先警告及通知 ),同時亦有不刪除留言的權利,如有任何爭議,管理員擁有最終的詮釋權。用戶切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。

    手機版| 廣告聯繫

    GMT+8, 2024-11-3 01:33 , Processed in 0.022452 second(s), 25 queries , Gzip On.

    Powered by Discuz! X2.5

    © 2001-2012 Comsenz Inc.

    回頂部